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Methods
A point-based deep learning framework is developed and used for the classification of building and non-building points by integrating PointSIFT algorithm and a patch-based voting strategy

Point-based features including surface normal, curvature, and coefficient variance are estimated for each individual point within its neighborhood

A 3D Euclidean clustering method is used for delineating individual buildings and generating building footprints

Facet points of building are vertically compensated in order to overcome the shadow issues from LiDAR

A 3D Alpha shape (concave hulls) is estimated for each individual building and the building volume is
estimated based on it

Four types of changes (building demolition, new construction, reduction, and expansion) are identified by
comparing volume and footprint changes for each individual building from 2002 to 2014
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Conclusions
The proposed deep learning method performs well in extracting individual buildings and capturing different
types of building changes in urban environment

The proposed model is fully automatic which eliminates the computationally intensive point registration
process in previous methods

The training data needs to be further refined to include more types of small buildings in both downtown and
industrial area

The model needs to be tested at other locations and is expected to be more effective on LiDAR data with
higher point density

Study Site and LiDAR Data

Our study area locates at central east Boston downtown and part of 
southern Boston

This area has an active records of urban changes from 2002 to 2014

The 2002 LiDAR dataset used in this research was collected by 3Di 
Technologies, Inc. (Now Spectrum Mapping LLC) and provided by
Massachusetts Executive Office of Technology Services and Security. 

The 2014 LiDAR dataset used in this research was collected by the New 
England CMGP Lidar Processing project for the United States Geological 
Survey (USGS) and provided by NOAA

Both of the datasets in 2002 and 2014 are small footprint, discrete return 
LiDAR

The average point density of both 2002 and 2014 datasets is 3 pts/m2

Introduction and Questions
Background
Urbanization is happening at an unprecedented pace during the past 
several decades

Urban changes occurs in complex 3D patterns and optical remote sensing
data can hardly capture them

Mapping 3D features of individual buildings in urban environment is
difficult

Multi-temporal LiDAR provides an ideal way for delineating individual
buildings and capturing 3D patterns of urban change 

Questions
Can we extract individual buildings in 3D using deep learning from
multitemporal LiDAR data?

Can we accurately estimate building volumes and overcome the missing
of facet points while creating 3D models of individual buildings?

Is it possible to recognize different types of building changes and quantify 
the changes?

How is the detection accuracy among commercial, residential, and
industrial buildings?

Accuracy assessment

The algorithm performs well in individual building extraction with an average F1 score 0f ~95% between the
two time periods

Buildings with larger footprints tends to have a higher change detection accuracy (+3.71% in F1 score)
compared to buildings with smaller footprints

The industrial building has the largest omission error and most of the errors are from small fabricated
houses at construction sites

The commercial building has the largest commission error and most of the error cases are small and
irregularly shaped buildings in the downtown area

Results
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where n is the number of point neighbors considered in the neighborhood of Pi, P 
represents the 3D centroid of the nearest neighbors, jis the j-th eigenvalue of the 
covariance matrix, and Vj is the j-th eigenvector. 0,1,2 are the three eigenvalues of 
the covariance matrix.
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Study area (1: commercial area; 2: industrial area; 3: residential area)

The Extracted building points using patch-based PointSIFT method

A 3D Visualization of extracted individual building points The Distribution of different types of building changes (1: commercial area; 2: 
industrial area; 3: residential area)

The visualization of different building change types (green: detected 2002 building 
footprint; blue: detected 2014 building footprint)

The generation of 3D alpha shape of a building (a: the model generated from original 
points; b: the model generated from vertically compensated points)

Flowchart of the proposed method for individual building classification and change detection
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Omission and commission errors of detected changes with different
building types: (a) omission error; (b) commission error

Note:
>20m2: buildings with footprint larger than 20m2

>100m2: buildings with footprint larger than 100m2

Footprint	Area	(m2) Type Commercial	building Industrial	building Residential	building Overall
Precision 81.08% 92.39% 86.60% 86.94%
Recall 95.24% 90.43% 94.92% 93.71%
F1	score 87.59% 91.40% 90.57% 90.20%
Precision 86.89% 94.20% 92.90% 91.93%
Recall 96.36% 92.86% 97.30% 95.97%
F1	score 91.38% 93.53% 95.05% 93.91%

>20m2
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Accuracy assessment of building change detection
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Year Type Commercial building Industrial building Residential building Overall accuracy

Precision 98.01% 100.00% 98.52% 98.64%

Recall 96.47% 90.86% 89.81% 91.79%
F1 Score 97.23% 95.21% 93.96% 95.09%
Precision 0.9921875 0.99382716 0.994475138 0.993756504

Recall 0.954887218 0.899441341 0.955752212 0.945544554

F1 Score 0.973180077 0.944281525 0.974729242 0.969051243
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